Graphing Motion (Part 2)

A second type of graph used to describe the motion of an object will be covered in this lesson.

Velocity-Time Graphs

A Velocity-time graph describes the velocity of an object as a function of time. When plotting a velocity-time graph:

- Place velocity on the y-axis.
- Place time on the x -axis.
- Plot the data points.
- Connect the data points using either straight line segments or smooth curves.

Example 1

The following data describes the velocity of a bicycle at various times. Plot the velocity-time graph of the bike's motion.

Velocity (m/s)	0.0	2.0	4.0	6.0	8.0	10.0
Time (s)	0	10.0	20.0	30.0	40.0	50.0

	-																			
-																				

A velocity-time graph can be used to determine:

1. The velocity of the object at a given time.

Example 2

What is the velocity of the bike in Example 1 at $\mathrm{t}=25 \mathrm{~s}$?
2. The displacement of the object over a given time interval.

Example 3

What is the displacement of the bike in Example 1 from $t=10.0 \mathrm{~s}$ to $\mathrm{t}=30.0 \mathrm{~s}$?
3. The acceleration of the object over a given time interval.

Example 4

What is the acceleration of the bike in Example 1?

Summary

On a velocity-time graph:

1. The object's velocity at a given time is found by reading the graph.
2. The object's displacement over a given time interval is found by determining the area under the graph during the time interval.

Note: Areas above the time axis are positive displacements. Areas below the time axis are negative displacements.
3. The object's acceleration over a given time interval is given by the slope of the graph in that interval.

Common Velocity-Time Graphs

A velocity-time graph can also be used to provide a description of the motion of an object.

Homework

Motion Worksheet \#5

Motion Worksheet \#5

1. Given the velocity-time graph below:
a. Describe the motion of the object in each segment of the graph (A to I).
b. Calculate the acceleration of the object in each segment of the graph (A to I).
2. This graph describes the motion of an object moving in a straight line. At the beginning it is going east.

From the graph determine each of the following:
a. The object's displacement in the first 3.0 s .
b. The object's displacement between $t=3.0 \mathrm{~s}$ and $\mathrm{t}=5.0 \mathrm{~s}$.
c. The total displacement of the object in 14 s .
d. The acceleration of the object at $\mathrm{t}=7.0 \mathrm{~s}$.
3. Use this graph of the motion of a car to find the total displacement (north is positive).
4. From the graph below, determine the acceleration for each interval (A to E).

